Copper homeostasis and cuproptosis in central nervous system diseases

Copper homeostasis and cuproptosis in central nervous system diseases

  • Gao J, Wu X, Huang S, Zhao Z, He W, Song M. Novel insights into anticancer mechanisms of elesclomol: more than a prooxidant drug. Redox Biol. 2023;67:102891.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeinali T, Salmani F, Naseri K. Dietary intake of cadmium, chromium, copper, nickel, and lead through the consumption of meat, liver, and kidney and assessment of human health risk in Birjand, southeast of Iran. Biol Trace Elem Res. 2019;191:338–47.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology. 2019;74:230–41.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koike Y, Onodera O. Implications of miRNAs dysregulation in amyotrophic lateral sclerosis: challenging for clinical applications. Front Neurosci. 2023;17:1131758.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qian Y, Mikeska G, Harris ED, Bratton GR, Tiffany-Castiglioni E. Effect of lead exposure and accumulation on copper homeostasis in cultured C6 rat glioma cells. Toxicol Appl Pharm. 1999;158:41–9.

    Article 
    CAS 

    Google Scholar 

  • Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int J Mol Sci. 2020;21:9259.

  • An Y, Li S, Huang X, Chen X, Shan H, Zhang M. The role of copper homeostasis in brain disease. Int J Mol Sci. 2022;23:13850.

  • Rotilio G, Aquilano K, Ciriolo MR. Interplay of Cu,Zn superoxide dismutase and nitric oxide synthase in neurodegenerative processes. IUBMB Life. 2003;55:629–34.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 2022;32:417–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen B, Zhou X, Yang L, Zhou H, Meng M, Zhang L, et al. A cuproptosis activation scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med. 2022;148:105924.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang Y, Zhou Q, Lu L, Su Y, Shi W, Zhang H, et al. Copper induces cognitive impairment in mice via modulation of cuproptosis and CREB signaling. Nutrients. 2023;15:972.

  • Zhang C, Wang L, Guo Y, Feng W. Systematic analysis of brain and skull ischemic injury expression profiles reveals associations of the tumor immune microenvironment and cell death with ischemic stroke. Front Immunol. 2022;13:1082546.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou H, Liu Z, Zhang Z, Pandey NK, Amador E, Nguyen W, et al. Copper-cysteamine nanoparticle-mediated microwave dynamic therapy improves cancer treatment with induction of ferroptosis. Bioact Mater. 2023;24:322–30.

    CAS 
    PubMed 

    Google Scholar 

  • Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Culbertson EM, Culotta VC. Copper in infectious disease: using both sides of the penny. Semin Cell Dev Biol. 2021;115:19–26.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pierson H, Yang H, Lutsenko S. Copper transport and disease: what can we learn from organoids? Annu Rev Nutr. 2019;39:75–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lönnerdal B. Intestinal regulation of copper homeostasis: a developmental perspective. Am J Clin Nutr. 2008;88:846s–50s.

    Article 
    PubMed 

    Google Scholar 

  • Cui X, Wang Y, Liu H, Shi M, Wang J, Wang Y. The molecular mechanisms of defective copper metabolism in diabetic cardiomyopathy. Oxid Med Cell Longev. 2022;2022:5418376.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuo YM, Gybina AA, Pyatskowit JW, Gitschier J, Prohaska JR. Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr. 2006;136:21–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang X, Zhang X, Huang D, Zhao T, Zhao L, Fang X, et al. High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level. Anal Chem. 2021;93:11686–91.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ramos D, Mar D, Ishida M, Vargas R, Gaite M, Montgomery A, et al. Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells. PLoS One. 2016;11:e0149516.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnesano F, Natile G. Interference between copper transport systems and platinum drugs. Semin Cancer Biol. 2021;76:173–88.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Piacenza F, Giacconi R, Costarelli L, Basso A, Bürkle A, Moreno-Villanueva M, et al. Age, sex, and BMI influence on copper, zinc, and their major serum carrier proteins in a large european population including nonagenarian offspring from MARK-AGE study. J Gerontol A Biol Sci Med Sci. 2021;76:2097–106.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen J, Jiang Y, Shi H, Peng Y, Fan X, Li C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflug Arch. 2020;472:1415–29.

    Article 
    CAS 

    Google Scholar 

  • Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Physiol Cell Physiol. 2018;315:C186–c201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song IS, Chen HH, Aiba I, Hossain A, Liang ZD, Klomp LW, et al. Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol Pharm. 2008;74:705–13.

    Article 
    CAS 

    Google Scholar 

  • Petris MJ, Smith K, Lee J, Thiele DJ. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem. 2003;278:9639–46.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Medici V, Trevisan CP, D’Incà R, Barollo M, Zancan L, Fagiuoli S, et al. Diagnosis and management of Wilson’s disease: results of a single center experience. J Clin Gastroenterol. 2006;40:936–41.

    Article 
    PubMed 

    Google Scholar 

  • Garza NM, Swaminathan AB, Maremanda KP, Zulkifli M, Gohil VM. Mitochondrial copper in human genetic disorders. Trends Endocrinol Metab. 2023;34:21–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barry AN, Otoikhian A, Bhatt S, Shinde U, Tsivkovskii R, Blackburn NJ, et al. The lumenal loop Met672-Pro707 of copper-transporting ATPase ATP7A binds metals and facilitates copper release from the intramembrane sites. J Biol Chem. 2011;286:26585–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Szabó Z, Péter M, Héja L, Kardos J. Dual role for astroglial copper-assisted polyamine metabolism during intense network activity. Biomolecules. 2021;11:604.

  • Gee EM. Misconceptions and misapprehensions about population ageing. Int J Epidemiol. 2002;31:750–3.

    Article 
    PubMed 

    Google Scholar 

  • Fischer LR, Igoudjil A, Magrané J, Li Y, Hansen JM, Manfredi G, et al. SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse. Brain. 2011;134:196–209.

    Article 
    PubMed 

    Google Scholar 

  • Tokuda E, Anzai I, Nomura T, Toichi K, Watanabe M, Ohara S, et al. Immunochemical characterization on pathological oligomers of mutant Cu/Zn-superoxide dismutase in amyotrophic lateral sclerosis. Mol Neurodegener. 2017;12:2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Q, Sato EF, Kira Y, Nishikawa M, Utsumi K, Inoue M. A possible cooperation of SOD1 and cytochrome c in mitochondria-dependent apoptosis. Free Radic Biol Med. 2006;40:173–81.

    Article 
    PubMed 

    Google Scholar 

  • Sze CM, Shi Z, Khairallah GN, Feketeová L, O’Hair RA, Xiao Z, et al. Interaction of cisplatin and analogue Pt(en)Cl2 with the copper metallo-chaperone Atox1. Metallomics. 2013;5:946–54.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prohaska JR, Gybina AA. Intracellular copper transport in mammals. J Nutr. 2004;134:1003–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hubbard AL, Braiterman LT. Could ATP7B export Cu(I) at the tight junctions and the apical membrane? Gastroenterology. 2008;134:1255–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wittung-Stafshede P. Unresolved questions in human copper pump mechanisms. Q Rev Biophys. 2015;48:471–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pierrel F, Bestwick ML, Cobine PA, Khalimonchuk O, Cricco JA, Winge DR. Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly. Embo J. 2007;26:4335–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgada MN, Abriata LA, Cefaro C, Gajda K, Banci L, Vila AJ. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase. Proc Natl Acad Sci USA. 2015;112:11771–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Hadjiloi T, Martinelli M, Palumaa P. Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer. Proc Natl Acad Sci USA. 2008;105:6803–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anchordoquy JM, Anchordoquy JP, Nikoloff N, Pascua AM, Furnus CC. High copper concentrations produce genotoxicity and cytotoxicity in bovine cumulus cells. Environ Sci Pollut Res Int. 2017;24:20041–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rojo AI, Salinas M, Martín D, Perona R, Cuadrado A. Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J Neurosci. 2004;24:7324–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asthana A, Bollapalli M, Tangirala R, Bakthisaran R, Mohan Rao C. Hsp27 suppresses the Cu(2+)-induced amyloidogenicity, redox activity, and cytotoxicity of α-synuclein by metal ion stripping. Free Radic Biol Med. 2014;72:176–90.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chan WY, Garnica AD, Rennert OM. Cell culture studies of Menkes kinky hair disease. Clin Chim Acta. 1978;88:495–507.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang Y, Zhang L, Zhou F. Cuproptosis: a new form of programmed cell death. Cell Mol Immunol. 2022;19:867–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, et al. Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv Mater. 2023;35:e2212267.

    Article 
    PubMed 

    Google Scholar 

  • Yang L, Yang P, Lip GYH, Ren J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharm Sci. 2023;44:573–85.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia F, Zhang B, Yu W, Chen Z, Xu W, Zhao W, et al. Exploring the cuproptosis-related molecular clusters in the peripheral blood of patients with amyotrophic lateral sclerosis. Comput Biol Med. 2024;168:107776.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lai Y, Lin C, Lin X, Wu L, Zhao Y, Lin F. Identification and immunological characterization of cuproptosis-related molecular clusters in Alzheimer’s disease. Front Aging Neurosci. 2022;14:932676.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen W, Chen Y, Wu L, Gao Y, Zhu H, Li Y, et al. Identification of cell death-related biomarkers and immune infiltration in ischemic stroke between male and female patients. Front Immunol. 2023;14:1164742.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, et al. Epilepsy: mitochondrial connections to the ‘Sacred’ disease. Mitochondrion. 2023;72:84–101.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen C, Sheng ZG, Shao J, Tang M, Mao L, Huang CH, et al. Mechanistic investigation of the differential synergistic neurotoxicity between pesticide metam sodium and copper or zinc. Chemosphere. 2023;328:138430.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, et al. Glioma. Nat Rev Dis Prim. 2015;1:15017.

    Article 
    PubMed 

    Google Scholar 

  • Fehervari Z. Glioma immune evasion. Nat Immunol. 2017;18:487.

    Article 
    PubMed 

    Google Scholar 

  • Strowd RE, Swett K, Harmon M, Carter AF, Pop-Vicas A, Chan M, et al. Influenza vaccine immunogenicity in patients with primary central nervous system malignancy. Neuro Oncol. 2014;16:1639–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim HD, Choi H, Abekura F, Park JY, Yang WS, Yang SH, et al. Naturally-occurring tyrosinase inhibitors classified by enzyme kinetics and copper chelation. Int J Mol Sci. 2023;24:8226.

  • Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15:35–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang X, Zhou M, Liu Y, Si Z. Cope with copper: from copper linked mechanisms to copper-based clinical cancer therapies. Cancer Lett. 2023;561:216157.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qi J, Xing Y, Liu Y, Wang MM, Wei X, Sui Z, et al. MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy. 2021;17:4401–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar P, Yadav A, Patel SN, Islam M, Pan Q, Merajver SD, et al. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis. Mol Cancer. 2010;9:206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang C, Qi Q, Li W, Dang J, Hao M, Lv S, et al. A Cu(II)-ATP complex efficiently catalyses enantioselective Diels-Alder reactions. Nat Commun. 2020;11:4792.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buccarelli M, D’Alessandris QG, Matarrese P, Mollinari C, Signore M, Cappannini A, et al. Elesclomol-induced increase of mitochondrial reactive oxygen species impairs glioblastoma stem-like cell survival and tumor growth. J Exp Clin Cancer Res. 2021;40:228.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren X, Li Y, Zhou Y, Hu W, Yang C, Jing Q, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis. Redox Biol. 2021;46:102122.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong Z, Huang M, Liu Z, Xie P, Dong Y, Wu X, et al. Focused screening of mitochondrial metabolism reveals a crucial role for a tumor suppressor Hbp1 in ovarian reserve. Cell Death Differ. 2016;23:1602–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salaroglio IC, Belisario DC, Akman M, La Vecchia S, Godel M, Anobile DP, et al. Mitochondrial ROS drive resistance to chemotherapy and immune-killing in hypoxic non-small cell lung cancer. J Exp Clin Cancer Res. 2022;41:243.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poh TW, Huang S, Hirpara JL, Pervaiz S. LY303511 amplifies TRAIL-induced apoptosis in tumor cells by enhancing DR5 oligomerization, DISC assembly, and mitochondrial permeabilization. Cell Death Differ. 2007;14:1813–25.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang R, Song W, Zhu J, Shao X, Yang C, Xiong W, et al. Biomimetic nano-chelate diethyldithiocarbamate Cu/Fe for enhanced metalloimmunity and ferroptosis activation in glioma therapy. J Control Release. 2024;368:84–96.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanisch D, Krumm A, Diehl T, Stork CM, Dejung M, Butter F, et al. Class I HDAC overexpression promotes temozolomide resistance in glioma cells by regulating RAD18 expression. Cell Death Dis. 2022;13:293.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tatulian SA. Challenges and hopes for Alzheimer’s disease. Drug Discov Today. 2022;27:1027–43.

    Article 
    PubMed 

    Google Scholar 

  • Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397:1577–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jucker M, Walker LC. Alzheimer’s disease: from immunotherapy to immunoprevention. Cell. 2023;186:4260–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and astrocytes in Alzheimer’s disease in the context of the aberrant copper homeostasis hypothesis. Biomolecules. 2021;11:1598.

  • Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Bill E, Pipkorn R, et al. Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide. Biochemistry. 1998;37:7224–30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bagheri M, Joghataei MT, Mohseni S, Roghani M. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer’s disease. Neurobiol Learn Mem. 2011;95:270–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Malley TT, Oktaviani NA, Zhang D, Lomakin A, O’Nuallain B, Linse S, et al. Aβ dimers differ from monomers in structural propensity, aggregation paths and population of synaptotoxic assemblies. Biochem J. 2014;461:413–26.

    Article 
    PubMed 

    Google Scholar 

  • Kowalik-Jankowska T, Ruta-Dolejsz M, Wisniewska K, Lankiewicz L, Kozlowski H. Possible involvement of copper(II) in Alzheimer’s disease. Environ Health Perspect. 2002;110:869–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ennerfelt H, Frost EL, Shapiro DA, Holliday C, Zengeler KE, Voithofer G, et al. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell. 2022;185:4135–52.e22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9:42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu Z, Yu F, Gong P, Qiu Y, Zhou W, Cui Y, et al. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS. Toxicol Appl Pharm. 2014;276:95–103.

    Article 
    CAS 

    Google Scholar 

  • Hsu HW, Rodriguez-Ortiz CJ, Lim SL, Zumkehr J, Kilian JG, Vidal J, et al. Copper-induced upregulation of microRNAs directs the suppression of endothelial LRP1 in Alzheimer’s disease model. Toxicol Sci. 2019;170:144–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron. 2001;30:665–76.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Omar SH, Scott CJ, Hamlin AS, Obied HK. Olive biophenols reduces Alzheimer’s pathology in SH-SY5Y cells and APPswe mice. Int J Mol Sci. 2018;20:125.

  • Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400:1363–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen HP, Van Broeckhoven C, van der Zee J. ALS genes in the genomic era and their implications for FTD. Trends Genet. 2018;34:404–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gil-Bea FJ, Aldanondo G, Lasa-Fernández H, López de Munain A, Vallejo-Illarramendi A. Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev Mol Med. 2017;19:e7.

    Article 
    PubMed 

    Google Scholar 

  • Zhong Y, Wang J, Henderson MJ, Yang P, Hagen BM, Siddique T, et al. Nuclear export of misfolded SOD1 mediated by a normally buried NES-like sequence reduces proteotoxicity in the nucleus. Elife. 2017;6:e23759.

  • Lu P, Yan HJ, Yang C, Feng WC, Hu F, Wu YY, et al. High fat suppresses SOD1 activity by reducing copper chaperone for SOD1 associated with neurodegeneration and memory decline. Life Sci. 2021;272:119243.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robertson J, Doroudchi MM, Nguyen MD, Durham HD, Strong MJ, Shaw G, et al. A neurotoxic peripherin splice variant in a mouse model of ALS. J Cell Biol. 2003;160:939–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roos PM, Vesterberg O, Syversen T, Flaten TP, Nordberg M. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Biol Trace Elem Res. 2013;151:159–70.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Battaglia G, Riozzi B, Bucci D, Di Menna L, Molinaro G, Pallottino S, et al. Activation of mGlu3 metabotropic glutamate receptors enhances GDNF and GLT-1 formation in the spinal cord and rescues motor neurons in the SOD-1 mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2015;74:126–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tokuda E, Ono S, Ishige K, Watanabe S, Okawa E, Ito Y, et al. Ammonium tetrathiomolybdate delays onset, prolongs survival, and slows progression of disease in a mouse model for amyotrophic lateral sclerosis. Exp Neurol. 2008;213:122–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nikseresht S, Hilton JBW, Kysenius K, Liddell JR, Crouch PJ. Copper-ATSM as a treatment for ALS: support from mutant SOD1 models and beyond. Life. 2020;10:271.

  • Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, Boncompagni S, et al. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab. 2008;8:425–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McAllum EJ, Lim NK, Hickey JL, Paterson BM, Donnelly PS, Li QX, et al. Therapeutic effects of CuII(atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14:586–90.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soon CPW, Donnelly PS, Turner BJ, Hung LW, Crouch PJ, Sherratt NA, et al. Diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)) protects against peroxynitrite-induced nitrosative damage and prolongs survival in amyotrophic lateral sclerosis mouse model. J Biol Chem. 2011;286:44035–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bredesen DE, Wiedau-Pazos M, Goto JJ, Rabizadeh S, Roe JA, Gralla EB, et al. Cell death mechanisms in ALS. Neurology. 1996;47:S36–8. discussion S8-9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campbell BCV, Khatri P. Stroke. Lancet. 2020;396:129–42.

    Article 
    PubMed 

    Google Scholar 

  • Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 2023;23:407–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atkin MA, Gasper A, Ullegaddi R, Powers HJ. Oxidative susceptibility of unfractionated serum or plasma: response to antioxidants in vitro and to antioxidant supplementation. Clin Chem. 2005;51:2138–44.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cox C, Teknos TN, Barrios M, Brewer GJ, Dick RD, Merajver SD. The role of copper suppression as an antiangiogenic strategy in head and neck squamous cell carcinoma. Laryngoscope. 2001;111:696–701.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang L, Chen X, Cheng H, Zhang L. Dietary copper intake and risk of stroke in adults: a case-control study based on national health and nutrition examination survey 2013–2018. Nutrients. 2022;14:409.

  • Xiao Y, Yuan Y, Liu Y, Yu Y, Jia N, Zhou L, et al. Circulating multiple metals and incident stroke in Chinese adults. Stroke. 2019;50:1661–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang M, Li W, Wang Y, Wang T, Ma M, Tian C. Association between the change of serum copper and ischemic stroke: a systematic review and meta-analysis. J Mol Neurosci. 2020;70:475–80.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hilton JB, Kysenius K, White AR, Crouch PJ. The accumulation of enzymatically inactive cuproenzymes is a CNS-specific phenomenon of the SOD1(G37R) mouse model of ALS and can be restored by overexpressing the human copper transporter hCTR1. Exp Neurol. 2018;307:118–28.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sakata H, Niizuma K, Wakai T, Narasimhan P, Maier CM, Chan PH. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice. Stroke. 2012;43:2423–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang Y, Wang LP, Dong XH, Cai J, Jiang GJ, Zhang C, et al. Trace amounts of copper in drinking water aggravate cerebral ischemic injury via impairing endothelial progenitor cells in mice. CNS Neurosci Ther. 2015;21:677–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ketelut-Carneiro N, Fitzgerald KA. Apoptosis, pyroptosis, and necroptosis—Oh my! the many ways a cell can die. J Mol Biol. 2022;434:167378.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huo S, Wang Q, Shi W, Peng L, Jiang Y, Zhu M, et al. ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. Int J Mol Sci. 2023;24:1667.

  • Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019;101:801–19.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim GW, Chan PH. Involvement of superoxide in excitotoxicity and DNA fragmentation in striatal vulnerability in mice after treatment with the mitochondrial toxin, 3-nitropropionic acid. J Cereb Blood Flow Metab. 2002;22:798–809.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fox JH, Kama JA, Lieberman G, Chopra R, Dorsey K, Chopra V, et al. Mechanisms of copper ion mediated Huntington’s disease progression. PLoS ONE. 2007;2:e334.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lang M, Fan Q, Wang L, Zheng Y, Xiao G, Wang X, et al. Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer’s disease-like symptoms. Neurobiol Aging. 2013;34:2604–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen T, Hamby A, Massa SM. Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proc Natl Acad Sci USA. 2005;102:11840–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mayer RL, Verbeke R, Asselman C, Aernout I, Gul A, Eggermont D, et al. Immunopeptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes. Nat Commun. 2022;13:6075.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cooper GJ. Therapeutic potential of copper chelation with triethylenetetramine in managing diabetes mellitus and Alzheimer’s disease. Drugs. 2011;71:1281–320.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matsumura N, Kinoshita C, Bhadhprasit W, Nakaki T, Aoyama K. A purine derivative, paraxanthine, promotes cysteine uptake for glutathione synthesis. J Pharm Sci. 2023;151:37–45.

    Article 
    CAS 

    Google Scholar 

  • Bowroju SK, Mainali N, Ayyadevara S, Penthala NR, Krishnamachari S, Kakraba S, et al. Design and synthesis of novel hybrid 8-hydroxy quinoline-indole derivatives as inhibitors of Aβ self-aggregation and metal chelation-induced Aβ aggregation. Molecules. 2020;25:3610.

  • Ramli FF, Hashim SAS, Raman B, Mahmod M, Kamisah Y. Role of trientine in hypertrophic cardiomyopathy: a review of mechanistic aspects. Pharmaceuticals. 2022;15:1145.

  • Kirk FT, Munk DE, Swenson ES, Quicquaro AM, Vendelbo MH, Larsen A, et al. Effects of tetrathiomolybdate on copper metabolism in healthy volunteers and in patients with Wilson disease. J Hepatol. 2024;80:586–95.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang M, Zhang R, Dehaen W, Fang Y, Qian S, Ren Y, et al. Specific recognition, intracellular assay and detoxification of fluorescent curcumin derivative for copper ions. J Hazard Mater. 2021;420:126490.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gong B, Bai E, Feng X, Yi L, Wang Y, Chen X, et al. Characterization of chalkophomycin, a copper(II) metallophore with an unprecedented molecular architecture. J Am Chem Soc. 2021;143:20579–84.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer. 2023;22:46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westhoff MA, Zhou S, Nonnenmacher L, Karpel-Massler G, Jennewein C, Schneider M, et al. Inhibition of NF-κB signaling ablates the invasive phenotype of glioblastoma. Mol Cancer Res. 2013;11:1611–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Torres JB, Andreozzi EM, Dunn JT, Siddique M, Szanda I, Howlett DR, et al. PET imaging of copper trafficking in a mouse model of Alzheimer disease. J Nucl Med. 2016;57:109–14.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Su TA, Shihadih DS, Cao W, Detomasi TC, Heffern MC, Jia S, et al. A modular ionophore platform for liver-directed copper supplementation in cells and animals. J Am Chem Soc. 2018;140:13764–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coles LD, Tuite PJ, Öz G, Mishra UR, Kartha RV, Sullivan KM, et al. Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharm. 2018;58:158–67.

    Article 
    CAS 

    Google Scholar 

  • Joshi A, Rastedt W, Faber K, Schultz AG, Bulcke F, Dringen R. Uptake and toxicity of copper oxide nanoparticles in C6 glioma cells. Neurochem Res. 2016;41:3004–19.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patel D, Kell A, Simard B, Xiang B, Lin HY, Tian G. The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials. 2011;32:1167–76.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye D, Sultan D, Zhang X, Yue Y, Heo GS, Kothapalli S, et al. Focused ultrasound-enabled delivery of radiolabeled nanoclusters to the pons. J Control Release. 2018;283:143–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun D, Zhang W, Yu Q, Chen X, Xu M, Zhou Y, et al. Chiral penicillamine-modified selenium nanoparticles enantioselectively inhibit metal-induced amyloid β aggregation for treating Alzheimer’s disease. J Colloid Interface Sci. 2017;505:1001–10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ni C, Ouyang Z, Li G, Liu J, Cao X, Zheng L, et al. A tumor microenvironment-responsive core-shell tecto dendrimer nanoplatform for magnetic resonance imaging-guided and cuproptosis-promoted chemo-chemodynamic therapy. Acta Biomater. 2023;164:474–86.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang J, Han M, Zhang J, Abdalla M, Sun P, Yang Z, et al. Syphilis mimetic nanoparticles for cuproptosis-based synergistic cancer therapy via reprogramming copper metabolism. Int J Pharm. 2023;640:123025.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He Y, Yang M, Yang L, Hao M, Wang F, Li X, et al. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids Surf B Biointerfaces. 2023;226:113329.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia J, Hu C, Ji Y, Wang M, Jin Y, Ye L, et al. Copper-loaded nanoheterojunction enables superb orthotopic osteosarcoma therapy via oxidative stress and cell cuproptosis. ACS Nano. 2023;17:21134–52.

    Article 
    PubMed 

    Google Scholar 

  • Sun Y, Wang Y, Liu Y, Weng B, Yang H, Xiang Z, et al. Intelligent tumor microenvironment-activated multifunctional nanoplatform coupled with turn-on and always-on fluorescence probes for imaging-guided cancer treatment. ACS Appl Mater Interfaces. 2021;13:53646–58.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li R, Zhao W, Han Z, Feng N, Wu T, Xiong H, et al. Self-cascade nanozyme reactor as a cuproptosis inducer synergistic inhibition of cellular respiration boosting radioimmunotherapy. Small. 2024;20:e2306263.

    Article 
    PubMed 

    Google Scholar 

  • Zhou J, Yu Q, Song J, Li S, Li XL, Kang BK, et al. Photothermally triggered copper payload release for cuproptosis-promoted cancer synergistic therapy. Angew Chem Int Ed Engl. 2023;62:e202213922.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu Y, Niu X, Ding C, Lin Y, Fang W, Yan L, et al. Carrier-free self-assembly nano-sonosensitizers for sonodynamic-amplified cuproptosis-ferroptosis in glioblastoma therapy. Adv Sci. 2024;11:e2402516.

    Article 

    Google Scholar 

  • Chen K, Zhou A, Zhou X, He J, Xu Y, Ning X. Cellular Trojan Horse initiates bimetallic Fe-Cu MOF-mediated synergistic cuproptosis and ferroptosis against malignancies. Sci Adv. 2024;10:eadk3201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galler T, Lebrun V, Raibaut L, Faller P, Wezynfeld NE. How trimerization of CTR1 N-terminal model peptides tunes Cu-binding and redox-chemistry. Chem Commun. 2020;56:12194–7.

    Article 
    CAS 

    Google Scholar 

  • Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy. 2023;19:2175–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta A, Lutsenko S. Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem. 2009;1:1125–42.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cottin SC, Roussel G, Gambling L, Hayes HE, Currie VJ, McArdle HJ. The effect of maternal iron deficiency on zinc and copper levels and on genes of zinc and copper metabolism during pregnancy in the rat. Br J Nutr. 2019;121:121–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang Z, Zhang YH, Zhang W, Gao HL, Zhong ML, Huang TT, et al. Copper chelators promote nonamyloidogenic processing of AβPP via MT(1/2) /CREB-dependent signaling pathways in AβPP/PS1 transgenic mice. J Pineal Res. 2018;65:e12502.

    Article 
    PubMed 

    Google Scholar 

  • Wang Z, Zhang YH, Guo C, Gao HL, Zhong ML, Huang TT, et al. Tetrathiomolybdate treatment leads to the suppression of inflammatory responses through the TRAF6/NFκB pathway in LPS-stimulated BV-2 microglia. Front Aging Neurosci. 2018;10:9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saad MA, Ahmed MAE, Elbadawy NN, Abdelkader NF. Nano-ivabradine averts behavioral anomalies in Huntington’s disease rat model via modulating Rhes/m-tor pathway. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111:110368.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Squitti R, Rossini PM, Cassetta E, Moffa F, Pasqualetti P, Cortesi M, et al. d-penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur J Clin Invest. 2002;32:51–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oikawa S, Kai Y, Mano A, Nakamura S, Kakinuma Y. S-Nitroso-N-Pivaloyl-D-Penicillamine, a novel non-neuronal ACh system activator, modulates cardiac diastolic function to increase cardiac performance under pathophysiological conditions. Int Immunopharmacol. 2020;84:106459.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Camphausen K, Sproull M, Tantama S, Venditto V, Sankineni S, Scott T, et al. Evaluation of chelating agents as anti-angiogenic therapy through copper chelation. Bioorg Med Chem. 2004;12:5133–40.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang CY, Xie JW, Xu Y, Wang T, Cai JH, Wang X, et al. Trientine reduces BACE1 activity and mitigates amyloidosis via the AGE/RAGE/NF-κB pathway in a transgenic mouse model of Alzheimer’s disease. Antioxid Redox Signal. 2013;19:2024–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He M, Luo M, Liu Q, Chen J, Li K, Zheng M, et al. Combination treatment with fasudil and clioquinol produces synergistic anti-tumor effects in U87 glioblastoma cells by activating apoptosis and autophagy. J Neurooncol. 2016;127:261–70.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Regland B, Lehmann W, Abedini I, Blennow K, Jonsson M, Karlsson I, et al. Treatment of Alzheimer’s disease with clioquinol. Dement Geriatr Cogn Disord. 2001;12:408–14.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bruyère C, Madonna S, Van Goietsenoven G, Mathieu V, Dessolin J, Kraus JL, et al. JLK1486, a Bis 8-Hydroxyquinoline-Substituted Benzylamine, Displays Cytostatic Effects in Experimental Gliomas through MyT1 and STAT1 Activation and, to a Lesser Extent, PPARγ Activation. Transl Oncol. 2011;4:126–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du C, Feng W, Dai X, Wang J, Geng D, Li X, et al. Cu(2+) -Chelatable and ROS-Scavenging MXenzyme as NIR-II-Triggered Blood-Brain Barrier-Crossing Nanocatalyst against Alzheimer’s Disease. Small. 2022;18:e2203031.

    Article 
    PubMed 

    Google Scholar 

  • Wang W, Lin X, Dong X, Sun Y. A multi-target theranostic nano-composite against Alzheimer’s disease fabricated by conjugating carbon dots and triple-functionalized human serum albumin. Acta Biomater. 2022;148:298–309.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang Y, Arounleut P, Rheiner S, Bae Y, Kabanov AV, Milligan C, et al. SOD1 nanozyme with reduced toxicity and MPS accumulation. J Control Release. 2016;231:38–49.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu Q, Zhang H, Liu H, Han Y, Qiu W, Li Z. Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials. 2022;280:121287.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prajapati N, Karan A, Khezerlou E, DeCoster MA. The immunomodulatory potential of copper and silver based self-assembled metal organic biohybrids nanomaterials in cancer theranostics. Front Chem. 2020;8:629835.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ismail M, Yang W, Li Y, Wang Y, He W, Wang J, et al. Biomimetic Dp44mT-nanoparticles selectively induce apoptosis in Cu-loaded glioblastoma resulting in potent growth inhibition. Biomaterials. 2022;289:121760.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *